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ABSTRACT

In federated learning, fair prediction across various protected groups (e.g., gender,
race) is an important constraint for many applications. Unfortunately, prior work
studying group fair federated learning lacks formal convergence or fairness guaran-
tees. Our work provides a new definition for group fairness in federated learning
based on the notion of Bounded Group Loss (BGL), which can be easily applied
to common federated learning objectives. Based on our definition, we propose a
scalable algorithm that optimizes the empirical risk and global fairness constraints,
which we evaluate across common fairness and federated learning benchmarks.
Our resulting method and analysis are the first we are aware of to provide formal
theoretical guarantees for training a fair federated learning model.

1 INTRODUCTION

Federated learning (FL) is a training paradigm that aims to fit a model to data generated by, and
residing in, a set of disparate data silos, such as a network of remote devices or collection of
organizations (McMahan et al., 2017). Mirroring concerns around fairness in non-federated settings,
many FL applications similarly require performing fair prediction across protected groups. However,
naively estimating algorithmic fairness locally for each silo in a federated network is inaccurate due
to heterogeneity across silos—failing to produce a fair model over the entire dataset (Zeng et al.,
2021). To address this, several recent works have aimed to implement notions of group fairness in
federated networks (Chu et al., 2021; Zeng et al., 2021; Papadaki et al., 2022). Unfortunately, despite
their promising empirical performance, these prior works are heuristic in nature in that they lack
any guarantees surrounding the resulting fairness of the solutions. In this work we provide the first
method we are aware for group fairness in federated learning that comes with formal convergence
and fairness guarantees. In developing and analyzing our approach, we also take care to ensure that
the proposed method addresses practical constraints of realistic federated networks—building off
common communication-efficient federated optimization methods which can scale to networks of
millions of devices. We demonstrate the effectiveness of our theoretically-grounded approach on
common benchmarks from fair machine learning and federated learning.

The remainder of the paper is organized as follows. In Section 2, we formalize the Bounded Group
Loss fairness definition and corresponding fair federated learning objective. In Section 3, we present
a scalable algorithm to solve the proposed objective, and provide formal convergence and fairness
guarantees for our objective and algorithm. In Section 4, we evaluate our algorithm on common
fairness benchmark and show our method is able to achieve both better utility and fairness performance
compared to vanilla FedAvg. We defer a detailed discussion of related work to Appendix B.

2 FAIR FEDERATED LEARNING SETUP

Following standard federated learning scenarios (McMahan et al., 2017), we consider a network with
K different clients. Each client k ∈ [K] has access to data D̂k := {(xi, yi, ai)}i=1,··· ,mk

sampled
from the true data distribution Dk, where xi is an observation, yi is the label, ai is the protected
attribute. Let the hypothesis class beH and for any model h ∈ H, define the loss function on data
(x, y, a) to be l(h(x), y). Federated learning applications typically aim to solve:

min
h∈H

F (h) = min
h∈H

1

K

K∑
k=1

1

mk

mk∑
i=1

l(h(xk,i), yk,i) . (1)
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For simplicity, we define fk(h) = 1
mk

∑mk

i=1 l(h(xk,i), yk,i) as the local objective for client k.
Further, we assume h is parameterized by a vector w ∈ Rp where p is the number of parameters. We
will use F (w) and fk(w) to represent F (h) and fk(h) in the remainder of the paper.

To learn a model that satisfies any fairness constraint, a standard approach would be solve:

minh∈H F (h) subject to R(h), (2)

where R(h) represents a constraint set on h. Prior works (Zeng et al., 2021; Chu et al., 2021) studying
group fairness in federated learning proposed choosing a bounded group-specific parity difference
for R(h). In this work, we focus on a different fairness definition known as Bounded Group Loss
(BGL) (Agarwal et al., 2019) (defined below). We discuss the motivation of using BGL in Section 2.1
Definition 1. A classifier h satisfies Bounded Group Loss(BGL) at level ζ under distribution D if for
all a ∈ A, we have

E(x,y,a)∼D [l(h(x), y)|A = a] ≤ ζ . (3)

In practice, we could define empirical bounded group loss constraint at level ζ under the empirical
distribution D̂ = 1

K

∑K
k=1 D̂k to be

1

ma

K∑
k=1

∑
ak,i=a

l(h(xk,i), yk,i) ≤ ζ . (4)

In the rest of the paper, we will refer problem 2 as the constrained optimization problem with R(h)
replaced by Equation 4, which is the main problem we propose to solve.

2.1 FAIRNESS-AWARE OBJECTIVE

A common method to solve the constrained optimization problem (2) is to use Lagrangian multipliers.
This converts the objective into the following saddle point optimization problem:

max
λ∈R|A|

+ ,∥λ∥1≤B

min
w

G(w;λ) = F (w) + λT r(w) , (5)

where the a-th index of r is 1
ma

∑K
k=1

∑
ak,i=a l(h(xk,i), yk,i)− ζa.

Why use BGL rather than another fairness constraint? Many prior works choose the gap between
every two group’s loss as the fairness constraint and optimize the Lagrangian. Under such settings, the
objective becomes non-convex in terms of the model weight, making it likely that a solver will find
a local minima that either does not satisfy the fairness constraint or achieves poor utility. Different
from these approaches, BGL requires that for each group a ∈ A, the classifier h’s loss evaluated on
all data with protected attribute a is below a certain threshold. Therefore, given that the empirical
risk is convex, adding the BGL constraint preserves convexity. As we will see, a major benefit of
using BGL relative to other alternatives is that it can satisfy meaningful fairness constraints while
preserving convexity, enabling both strong empirical performance and formal theoretical guarantees.

3 PROVABLY FAIR FEDERATED LEARNING VIA BOUNDED GROUP LOSS

In this section, we first provide a scalable solver for Equation 5 in Algorithm 1. We then provide both
a formal convergence and fairness guarantee for our approach.

3.1 ALGORITHM

To find a saddle point for Objective 5, we follow the scheme from Freund & Schapire (1997) and
summarize our solver for the fair FL with bounded group loss in Algorithm 1. Our algorithm is
based off of FedAvg (McMahan et al., 2017), a common scalable federated optimization method. Our
method alternates between two steps: (1) given a fixed λ, find w that minimizes F (w) + λT r; (2)
given a fixed w, find λ that maximizes λT r. In Algorithm 1, we provide an example in which the
first step is achieved by using FedAvg to solve minw F (w) + λT r (line 4-10). Note that solving this
objective does not require the FedAvg solver; any algorithm that learns a global model in federated
learning could be used to find a certain w given λ. Following Algorithm 2 in Agarwal et al. (2019),
we use exponentiated gradient descent to update λ after training a federated model for each round.
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Note that the ultimate goal to solve for Objective 5 is to find a w such that it minimizes the empirical
risk subject to r(w) ≤ 0. Therefore, at the end of training, our algorithm checks whether the resulting
model w̄ violates the fairness guarantee by at most some constant error M+2ν

B where M is the upper
bound for the empirical risk and ν is the upper bound provided in Equation 7 (line 16-20). We will
show in the Lemma 6 that this is always true when there exists a solution w∗ for Problem 2. However,
it is also worth noting that the Problem 2 does not always have a solution w∗. For example when we
set ζ = 0, requiring r(w) ≤ 0 is equivalent to requiring the empirical risk given any group a ∈ A is
non positive, which is only feasible when the loss is 0 for every data in the dataset. In this case, our
algorithm will simply output null if the fairness guarantee is violated by an error larger than M+2ν

B .

3.2 CONVERGENCE GUARANTEE

In this section we provide a formal convergence guarantee for Algorithm 1 in solving the empirical
risk objective G(·; ·). Note that G is linear in λ. Hence, given a fixed w0, we can find a solution to the
problem maxλ G(w0;λ), denoted as λ∗, i.e. G(w0;λ

∗) ≥ G(w0;λ) for all λ. When G is convex
in w, we can argue that given a fixed λ0, there exists w∗ that satisfies w∗ = argminw G(w;λ0), i.e.
G(w∗;λ0) ≤ G(w;λ0) for all w. Therefore, (w∗,λ∗) is a saddle point of G(·; ·).
To show how the solution found by our algorithm compares to an actual saddle point of G, we
introduce the notion of a ν-approximate saddle point.

Definition 2. (ŵ, λ̂) is a ν-approximate saddle point of G if

G(ŵ, λ̂) ≤ G(w, λ̂) + ν for all w
G(ŵ, λ̂) ≥ G(ŵ,λ)− ν for all λ

(6)

As an example, (w∗,λ∗) is a 0-approximate saddle point of G. Now we present our main theorem of
convergence below.
Theorem 1. Let Assumption 1-3 hold. Define κ = L

µ , γ = max{8κ, J} and the learning rate

ηQ = 2
(1+B)µ(γ+t) , and assume ∥r∥∞ ≤ ρ. Letting w̄ = 1

ET

∑ET
t=1 w

t, λ̄ = 1
ET

∑ET
t=1 λ

t, we have

max
λ

G(w̄;λ)−min
w

G(w; λ̄) ≤ 1

T

T∑
t=1

κ

γ + t− 1
C +

B log(|A|+ 1)

ηθET
+ ηθρ

2B (7)

where C is a constant.

We provide detailed descriptions of assumptions in the appendix. The upper bound in Equation 7
consists of two parts: the error for the FedAvg process to obtain w̄ and the error for the Exponentiated
Gradient Ascent process to obtain λ̄. Following Theorem 1, we also provide the following corollary
expressing the solution of Algorithm 1 as a ν-approximate saddle point of G:

Corollary 2. Let ηθ = ν
2ρ2B and T ≥ 1

ν(γ+1)−2κC

(
4ρ2B2 log(|A|+1)(γ+1)

νE + 2κC(γ − 1)
)

, then

(w̄, λ̄) is a ν-approximate saddle point of G.

We provide detailed proofs for both Theorem 1 and Corollary 2 in the appendix.

3.3 FAIRNESS GUARANTEE

In the previous section, we demonstrated that our Algorithm 1 converges to a ν-approximate saddle
point of the objective G. In this section, we further motivate why we care about finding a ν-
approximate saddle point. Eventually, the model learned will be evaluated on test data and data from
silo not seen during training. Define the true data distribution to be D = 1

K

∑K
k=1Dk. We would

like to formalize how well our model is evaluated on the true distribution D as well as how well the
fairness constraint is satisfied under D. The result is presented below in Theorem 3.
Theorem 3. Let Assumption 1-4 holds. Let F be the expected risk over the true distribution D,
(w̄, λ̄) be a ν-approximate saddle point of G. Then with probability 1− δ, either there doesn’t exist
solution for Equation 2 and Algorithm 1 returns null or Algorithm 1 returns w̄ satisfies

F(w̄) ≤ F(w∗) + 2ν + 4Rm(H) + 2M
K

√∑K
k=1

1
2mk

log(1/δ),

ra(w̄) ≤ M+2ν
B + 2Ra(H) + M

ma

√
K
2 log(1/δ)

(8)
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Figure 1: Comparison between FedAvg and our FL via BGL in terms of test accuracy and max group loss on
ACS Employment (Left) and CelebA (Right). For each dataset, we select three models for our method to show
the relation between test accuracy and fairness (max group loss).

where w∗ is a solution for Equation 2, ra = E(x,y,a)∼D [l(h(x), y)|A = a]− ζa.

Note that the fairness constraint for group a under true distribution in Equation 8 is upper bounded by
O
(√

K
ma

)
. For any group a0 with sufficient data, i.e. ma0 is large, the BGL constraint with respect to

group a0 under D has stronger formal fairness guarantee compared to any group with less data. We
could also see that as the number of silo increases, the upper bound becomes weaker. We provide
details and proof for Theorem 3 in the appendix.

4 EXPERIMENTS

In this section, we evaluate our Algorithm 1 on US-wide ACS PUMS data, a recent group fairness
benchmark dataset and CelebA (Caldas et al., 2018), a common federated learning dataset. We
compare our method with training a vanilla FedAvg model in terms of both fairness and utility
(Section 4.1). We further show the empirical difference between training with our global BGL
constraint vs. local BGL constraints in Appendix F.

Setup. For all experiments, we evaluate the accuracy and the empirical loss for each group on test data
that belongs to all the silos of our fair federated learning solver. We consider the ACS Employment
task (Ding et al., 2021) with race as a protected attribute and CelebA (Caldas et al., 2018) with gender
as a protected attribute. A detailed description of datasets and models can be found in the appendix.

4.1 FAIRNESS-UTILITY RELATIONSHIP OF ALGORITHM 1
We first explore how test accuracy differs as a function maximum group loss using our Algorithm
1. To be consistent with our method and theoretical analysis, we exclude the protected attribute
ai for each data as a feature for learning the predictor. For each dataset, given a fixed number of
training iterations E and T , we finetune B and ζ and evaluate both test accuracy and test loss on each
group. Given a certain test accuracy, we select the hyperparameter pair (B, ζ) that yields the lowest
maximum group loss. We show the relation between test accuracy vs. max group loss in Figure
2 (Left). On both datasets, our method not only yields a model with significantly smaller maximum
group loss than vanilla FedAvg, but also achieves higher test accuracy than the baseline FedAvg
which is unaware of group fairness. Therefore, our method yields a model where utility can coexist
with fairness constraints relying on Bounded Group Loss.

5 CONCLUSION AND FUTURE WORK

In this work, we propose a fair learning objective for federated settings via Bounded Group Loss.
We then propose a scalable algorithm to find an approximate saddle point for the objective. The-
oretically, we provide convergence and fairness guarantees for our method. Empirically, we show
that on ACS Employment and CelebA tasks, our method satisfies high accuracy and strong fairness
simultaneously. We are interested in further empirically evaluating our approach in future work, as
well as characterizing the difference between using local BGL and global BGL from a theoretical
perspective. As our method focuses on optimizing a different fairness constraint (BGL) compared to
prior works, we would also like to explore connections between BGL and other fairness notions and
expand our framework to cover additional fairness settings.
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Table 1

Dataset Number of Silos Model Protected Attribute Partition Type Task Type
ACS Employment (Ding et al., 2021) 50 Logistic Regression Race Natural partition by States Binary classification
CelebA (Liu et al., 2015; Caldas et al., 2018) 50 4-layer CNN Gender Manual partition Binary classification

A DATASETS AND MODELS

We summarize the details of the datasets and models we used in our empirical study in Table 1. Our
experiments include both convex (Logistic Regression) and non-convex (CNN) loss objectives on
both fairness (ACS Employment) and federated learning (CelebA) benchmarks.

B BACKGROUND AND RELATED WORK

Algorithmic Fairness in Machine Learning. Algorithmic fairness in machine learning literature
often refers to protection of a protected attribute during the process of learning a model. Three
common family of approaches to obtain fairness are pre-processing methods that modify the input
data (e.g., Zemel et al., 2013; Feldman et al., 2015; Calmon et al., 2017); post-processing methods
that revise the prediction score (e.g., Hardt et al., 2016; Dwork et al., 2018; Menon & Williamson,
2018); and training methods that optimize an objective with some fairness constraints (e.g., Agarwal
et al., 2018; 2019; Zafar et al., 2017a;b; Woodworth et al., 2017). All of these methods are based
on using a centralized dataset to train and evaluate a model. In our setting where data is privately
distributed across different data silos, directly applying these methods is not applicable in order to
achieve global fairness across all silos.

Fair Federated Learning. In federated learning, fairness could refer to multiple definitions. One
commonly used notion is representation parity (Hashimoto et al., 2018) whose application in FL
requires the model’s performance across all devices to have small variance. There are a line of recent
works that study this notion of fairness in the context of federated learning (Mohri et al., 2019; Li
et al., 2019a; Donahue & Kleinberg, 2021). In this work we aims at achieving algorithmic fairness in
federated learning, where every data belongs to a specific protected group. The purpose of learning is
to find a model that doesn’t introduce bias towards any group. In the rest of the work we use the word
fair(ness) to represent the notion of group fair(ness). Recent works have proposed various objectives
for learning an algorithmic fair model under the federated setting. Zeng et al. (2021) proposed a
bi-level optimization objective that minimizes the difference between each group’s loss while finding
an optimal global model. Chu et al. (2021) proposed a similar constrained optimization problem by
finding the best model subject to an upper bound on the group loss difference. Different from either
approach, our method focuses on fairness a constraint based on upperbounding the loss of each group
rather than the loss difference between any two groups. Unlike prior work, our work provides formal
convergence and fairness guarantees with respect to our algorithm.

C DETAILED DESCRIPTION OF ALGORITHM 1

We formally introduce our proposed algorithm below.

D PROOF OF THEOREM 1

We first introduce a few assumptions needed for Theorem 1.

Assumption 1. Let fk be µ−strongly convex and L−smooth for all k = 1, · · · ,K.

Assumption 2. Assume the stochastic gradient of fk has bounded variance: E[∥∇fi(wk
t ; ξ

k
t ) −

∇fk(wk
t )∥2] ≤ σ2

k for all k = 1, · · · ,K.

Assumption 3. Assume the stochastic gradient of fk is uniformly bounded: E[∥∇fk(wk
t ; ξ

k
t )∥2] ≤

G2 for all k = 1, · · · ,K.

Assumption 4. Let F and F be upper bounded by constant M .

7
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Algorithm 1 FedAvg with BGL

1: Input: T , θ0 = 0, ηw, ηθ, w0, w̄ = 0, M , ν, B
2: for i = 1, · · · , E do
3: Set

λa = B
exp(θia)

1 +
∑

a′ exp(θia′)

4: for t = 0, · · · , T − 1 do
5: Server broadcasts wt to all the clients.
6: for all k in parallel do
7: Each task updates its weight wk for some J iterations

wt+1
k = wt − ηw

(
∇wt

(
fk(w

t) + λT r
))

8: Each client sends gt+1
k = wt+1

k − wt
k and θta,k back to the server.

9: end for
10: Server aggregates the weight

wt+1 = wt +
1

K

K∑
k=1

gt+1
k

11: Update w̄ =
∑T

t=1 w
t and set w0 = wT

12: end for
13: Server updates

θ(i+1) = θi + ηθr
14: end for
15: Server updates w̄ ← 1

ET w̄

16: if maxa ra ≤ M+2ν
B then

17: return w̄
18: else
19: return null
20: end if

Lemma 1 (Li et al. (2019b)). Let Γ = F ∗ −
∑

i piF
∗
i , κ = L

µ , γ = max{8κ, J} and the learning
rate ηt =

2
µ(γ+t) . Then FedAvg with full device participation satisfies

1

T

T∑
t=1

F (wt)− F ∗ ≤ 1

T

T∑
t=1

κ

γ + t− 1

(
2C

µ
+

µγ

2
E[∥w1 − w∗∥2]

)

where

C =

N∑
i=1

p2iσ
2
i + 6LΓ + 8(J − 1)2G2

Proof for Theorem 1. Let ma,k be the number of data with protected attribute a for client k. By
Assumption 1, we have Gi be (1 +

∑
a λa

ma,k

ma
)µ-strongly convex and (1 +

∑
a λa

ma,k

ma
)L-smooth.

Since ∥λ∥1 ≤ B, we have Gi be (1 +B)µ-strongly convex and (1 +B)L-smooth. We first present

8



Published at ICLR 2022 Workshop on Socially Responsible Machine Learning

the regret bound for wt

1

ET

ET∑
t=1

G(wt;λt)−min
w

1

ET

ET∑
t=1

G(w;λt) =
1

ET

(
ET∑
t=1

G(wt;λt)−min
w

ET∑
t=1

G(w;λt)

)
(9)

=
1

ET

(
E−1∑
i=0

T∑
t=1

G(wiT+t;λi)−min
w

ET∑
t=1

G(w;λt)

)
(10)

≤ 1

ET

(
E−1∑
i=0

(
T∑

t=1

G(wiT+t;λi)−min
w

T∑
t=1

G(w;λi)

))
(11)

=
1

E

E−1∑
i=0

(
1

T

T∑
t=1

G(wt;λi)−G∗(λi)

)
(12)

≤ 1

ET

E−1∑
i=0

T∑
t=1

κ

γ + t− 1

(
2Ci

µ
+

µγ

2
E[∥w1,i − w∗,i∥2]

)
(13)

≤ 1

T

T∑
t=1

κ

γ + t− 1

(
2maxi Ci

µ
+

µγ

2
max

i
E[∥w1,i − w∗,i∥2]

)
(14)

Now we present the regret bound for λt ∈ R|A|
+ . For any λt, let’s define λ̃t ∈ R|A|+1

+ such that λ̃t

satisfies ∥λ̃t∥1 = B and the first |A| entries of λ̃t is the same as λt. Let r̃t ∈ R|A|+1 such that the
first |A| entries of r̃t is the same as rt and the last entry of r̃t is 0. Therefore, we have

λT rt = λ̃T r̃t (15)

for all λ.

By Shalev-Shwartz et al. (2011), for any λ̃, we have

ET∑
t=1

λ̃T r̃t ≤
ET∑
t=1

(λ̃t)T r̃t +
B log(|A|+ 1)

ηθ
+ ηθρ

2BET (16)

=

ET∑
t=1

(λt)T rt +
B log(|A|+ 1)

ηθ
+ ηθρ

2BET (17)

Therefore, we have

min
λ

1

ET

ET∑
t=1

G(wt;λ)− 1

ET

ET∑
t=1

G(wt;λt) = min
λ

1

ET

ET∑
t=1

λT rt − 1

ET

ET∑
t=1

(λt)T rt (18)

≤ B log(|A|+ 1)

ηθET
+ ηθρ

2B (19)

Hence, we conclude that

min
λ

1

ET

ET∑
t=1

G(wt;λ)−min
w

1

ET

ET∑
t=1

G(w;λt) ≤ 1

T

T∑
t=1

κ

γ + t− 1

(
2maxi Ci

(1 +B)µ
+

(1 +B)µγ

2
max

i
E[∥w1,i − w∗,i∥2]

)
(20)

+
B log(|A|+ 1)

ηθET
+ ηθρ

2B (21)
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By Jensen’s Inequality, G( 1
ET

∑ET
t=1 w

t;λ) ≤ 1
ET

∑ET
t=1 G(wt;λ). Therefore, we have

min
λ

G(w̄;λ)−min
w

G(w; λ̄) ≤ 1

T

T∑
t=1

κ

γ + t− 1

(
2maxi Ci

(1 +B)µ
+

(1 +B)µγ

2
max

i
E[∥w1,i − w∗,i∥2]

)
(22)

+
B log(|A|+ 1)

ηθET
+ ηθρ

2B (23)

Let C1 = maxi Ci and C2 = maxi E[∥w1,i − w∗,i∥2], we get Theorem 1.

Proof for corollary 1. Note that log(t+ 1) ≤
∑t

n=1
1
n ≤ log(t) + 1 Let

C = 2maxi Ci

(1 +B)µ
+

(1 +B)µγ

2
max

i
E[∥w1,i − w∗,i∥2] (24)

we have

min
λ

G(w̄;λ)−min
w

G(w; λ̄) ≤ κC
T

(log(γ + T − 1) + 1− log(γ + 1)) +
B log(|A|+ 1)

ηθET
+ ηθρ

2B

(25)

Denote the right hand side as νT . Pick ηθ = ν
2ρ2B and T ≥

1
ν(γ+1)−2κC

(
4ρ2B2 log(|A|+1)(γ+1)

νE + 2κC(γ − 1)
)

.

νT ≤
κC
T

γ + T − 1

γ + 1
+

2ρ2B2 log(|A|+ 1)

νET
+

ν

2
(26)

=
1

T

κC(γ − 1)νE + 2ρ2B2 log(|A|+ 1)(γ + 1)

νE(γ + 1)
+

κC
γ + 1

+
ν

2
(27)

≤ νE(ν(γ + 1)− 2κC)
4ρ2B2 log(|A|+ 1)(γ + 1) + 2κC(γ − 1)νE

κC(γ − 1)νE + 2ρ2B2 log(|A|+ 1)(γ + 1)

νE(γ + 1)
+

κC
γ + 1

+
ν

2
(28)

=
νE(ν(γ + 1)− 2κC)

2νE(γ + 1)
+

κC
γ + 1

+
ν

2
(29)

=
ν

2
+

ν

2
(30)

= ν (31)

E PROOF FOR THEOREM 3

We first introduce a few lemmas necessary for proof for Theorem 3.
Lemma 2. Let

Rm(H) = ESk∼Dmk
k ,σ

[
sup
h∈H

1

K

K∑
k=1

1

mk

mk∑
i=1

σk,il (h(xk,i), yk,i)

]
then for any h ∈ H, with probability 1− δ, we have

|F(h)− F (h)| ≤ 2Rm(H) + M

K

√√√√ K∑
k=1

1

2mk
log(1/δ) (32)

Proof for lemma 2. Lemma 2 directly follows proof for Theorem 2 in Mohri et al. (2019) with
λk = 1

K .

10
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Lemma 3. Let

Ra(H) = ESk∼Dmk
k ,σ

[
sup
h∈H

K∑
k=1

1

ma

∑
ai=a

σk,il (h(xk,i), yk,i)

]
then for any h ∈ H and a ∈ A, with probability 1− δ, we have

|ra(h)− ra(h)| ≤ 2Ra(H) +
M

ma

√
K

2
log(1/δ) (33)

Lemma 4 (Lemma 1 in Agarwal et al. (2018)). Let (w̄, λ̄) is a ν-approximate saddle point, then

λ̄T r(w̄) ≥ Bmax
a∈A

ra(w̄)+ − ν (34)

where x+ = max{x, 0}.
Lemma 5 (Lemma 2 in Agarwal et al. (2018)). For any w such that r(w) ≤ 0|A|, F (w̄) ≤ F (w)+2ν.

Lemma 6. Assume there exists w∗ satisfies r(w∗) ≤ 0|A|, we have

Bmax
a∈A

ra(w̄)+ ≤M + 2ν (35)

Proof for lemma 6. Note that

F (w̄) +Bmax
a∈A

ra(w̄)+ − ν ≤ F (w̄) + λ̄T r(w̄) (36)

= G(w̄, λ̄) (37)

≤ min
w

G(w, λ̄) + ν (38)

≤ G(w∗, λ̄) + ν (39)

= F (w∗) + λ̄T r(w∗) + ν (40)
≤ F (w∗) + ν. (41)

Therefore, we have
F (w̄) ≤ F (w∗) + 2ν. (42)

Hence,

Bmax
a∈A

ra(w̄)+ ≤ F (w∗)− F (w̄) + 2ν (43)

≤M + 2ν, (44)

Note that Lemma 6 tells us when there exists a solution for problem 2, the empirical fairness constraint
violates by at most an error of M+2ν

B . In other words, this guarantees that our algorithm 1 always
output a model when problem 2 has a solution.

Now we provide proof for Theorem 3.

Proof for Theorem 3. When there exists a solution to problem 2: w∗, by lemma 2, 6, we have

F(w̄) ≤ F (w̄) + 2Rm(H) + M

K

√√√√ K∑
k=1

1

2mk
log(1/δ) (45)

≤ F (w∗) + 2ν + 2Rm(H) + M

K

√√√√ K∑
k=1

1

2mk
log(1/δ) (46)

≤ F(w∗) + 2ν + 4Rm(H) + 2M

K

√√√√ K∑
k=1

1

2mk
log(1/δ). (47)
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Figure 2:

Combined with lemma 3, 6, we have

ra(w̄) ≤ ra(w̄) + 2Ra(H) +
M

ma

√
K

2
log(1/δ) (48)

≤ M + 2ν

B
+ 2Ra(H) +

M

ma

√
K

2
log(1/δ) (49)

Therefore, Theorem 3 holds in this case.

When there doesn’t exist a solution to problem 2, Algorithm 1 outputs w̄ only when maxa∈A ra(w̄) ≤
M+2ν

B . In certain scenario, we are still able to obtain

ra(w̄) ≤
M + 2ν

B
+ 2Ra(H) +

M

ma

√
K

2
log(1/δ) (50)

by applying lemma 3. Since w∗ doesn’t exist,

F(w̄) ≤ F(w∗) + 2ν + 4Rm(H) + 2M

K

√√√√ K∑
k=1

1

2mk
log(1/δ) (51)

holds vacuously.

Therefore, Theorem 3 holds for both cases.

F LOCAL VS GLOBAL FAIRNESS CONSTRAINT

In federated learning, previous work has shown it is not feasible to use local fairness metrics to
approximate global fairness metrics. In other words, applying fair training locally at each data silo
and aggregate the resulting model is not able to provide strong fairness guarantee at the global
level with the same fairness definition (Zeng et al., 2021). In this section, we present and compare
the relationship between test accuracy and max group loss under local BGL constraint and global
BGL constraint. The results are shown in Figure 2 for both datasets. On ACS Employment dataset,
compared to the proposed method, FL via local BGL achieves higher maximum group loss given the
same accuracy. Contrary to what is shown in Zeng et al. (2021), on both datasets, even with local
BGL constraint, fairness aware federated learning with proper hyper parameters yields a more fair
and accurate model than FedAvg. The gap between fairness guarantee when optimizing global and
local BGL constraint potentially depends on the data heterogeneity level across the silos. In future
work, we are interested in investigating the relation between data heterogeneity and differences in the
local vs. global BGL constraint.
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