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Abstract

This paper targets the efficient construction of a safety shield
for decision making in scenarios that incorporate uncertainty.
Markov decision processes (MDPs) are prominent models
to capture such planning problems. Reinforcement learning
(RL) is a machine learning technique to determine near-
optimal policies in MDPs that may be unknown prior to ex-
ploring the model. However, during exploration, RL is prone
to induce behavior that is undesirable or not allowed in safety-
or mission-critical contexts. We introduce the concept of a
probabilistic shield that enables decision-making to adhere
to safety constraints with high probability. In a separation of
concerns, we employ formal verification to efficiently com-
pute the probabilities of critical decisions within a safety-
relevant fragment of the MDP. We use these results to realize
a shield that is applied to an RL algorithm which then opti-
mizes the actual performance objective. We discuss tradeoffs
between sufficient progress in exploration of the environment
and ensuring safety. In our experiments, we demonstrate on
the arcade game PAC-MAN and on a case study involving
service robots that the learning efficiency increases as the
learning needs orders of magnitude fewer episodes.

Introduction
Recent years showed increased use of reinforcement learn-
ing (RL) in solving tasks such as complex games (Silver
et al. 2016) or robotic manipulation (Wang et al. 2019).
In RL, an agent perceives the surrounding environment
and acts towards maximizing a long-term reward signal.
A major open challenge is the safety of decision-making
for systems employing RL (Stoica et al. 2017; Freedman
and Zilberstein 2016). Particularly during the exploration
phase, when an agent chooses random actions in order to
examine its surroundings, it is important to avoid actions
that may cause unsafe outcomes. The area of safe explo-
ration investigates how RL agents can adhere to safety re-
quirements during this phase (Pecka and Svoboda 2014;
Amodei et al. 2016).

One suitable technique that delivers theoretical guaran-
tees are so-called safety-shields (Bloem et al. 2015; Alshiekh
et al. 2018). Shields prevent an agent from taking unsafe
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actions at runtime. To this end, the performance objective
is extended with a constraint specifying that unsafe states
should never be visited. This new safety objective ensures
there are no violations during the exploration phase. So far,
shields have showed success in deterministic settings, where
an agent avoids safety violations altogether. However, in
many cases this tight restriction limits the agent’s explo-
ration and understanding of the environment, and policies
satisfying the restrictions may not even exist.

We propose to incorporate more liberal constraints that
enforce safety violations to occur only with small probabil-
ity. If an action increases the probability of a safety violation
by more than a threshold δ with respect to the optimal safety
probability, the shield blocks the action from the agent.

Consequently, an agent augmented with a shield is guided
to satisfy the safety objective during exploration (or as long
as the shield is used). The shield is adaptive with respect to
δ, as a high value for δ yields a stricter shield, a smaller value
a more permissive shield. The value for δ can be changed
on-the-fly, and may depend on the individual minimal safety
probabilities at each state. Moreover, in case there is not suit-
able safe action with respect to δ, the shield can always pick
the optimal action as a fallback.

We base our formal notion of a probabilistic shield on
MDPs, which constitute a popular modeling formalism for
decision-making under uncertainty (White 1985) and is
widely used in model-based RL. We assess safety by means
of probabilistic temporal logic constraints (Baier and Ka-
toen 2008) that limit, for example, the probability to reach a
set of critical states in the MDP.

In order to assess the risk of one action, we (1) construct
a behavior model for the environment using model-based
RL (Dayan and Niv 2008). We can plug this model into any
concrete scenario to obtain an MDP. To construct the shield,
we (2) use a model-based verification technique known
as model checking (Clarke, Grumberg, and Peled 2001;
Baier and Katoen 2008) that assesses whether a system
model satisfies a specification. Due to its rigor, the valid-
ity of results only depends on the quality of the model, and
we obtain precise safety probabilities of any possible deci-
sion within the MDP. These probabilities can be looked up
efficiently and compared to the threshold δ. The shield then
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readily (3) augments either model-free or model-based RL.
We identify three key challenges:
Firstly, model checking – as any model-based technique –

is susceptible to scalability issues. A key advantage of using
a separate safety objective is that we may analyze safety on
just a fraction of the system, the safety-critical MDP. In our
experiments, these MDP fragments are at least ten orders
of magnitude smaller than a full model of the system, ren-
dering model checking applicable to realistic scenarios. We
introduce further optimizations based on problem-specific
abstraction techniques.

Secondly, without randomness, all states are either abso-
lutely safe or unsafe. However, in the presence of random-
ness, safety may be seen as a quantitative measure: in some
states all actions may induce a large risk, while one action
may be considered relatively safe. Therefore, it is essential
to have an adaptive notion of shielding, in which the pre-
selection of actions is not based on absolute thresholds.

Lastly, shielding may restrict exploration and lead to sub-
optimal policies. Therefore, it should not be considered in
isolation. The trade-off between optimizing the performance
objective and the achieved safety is intricate. Intuitively, ac-
cepting small short term risks may allow for efficient explo-
ration and limit the risk long-term. To this end, we provide
and discuss mechanisms that allow to adjust the shield based
on such observations.

We apply shielding to two distinct use cases: the arcade
game PACM-MAN and a new case study involving service
robots in a warehouse. Shielded RL leads to improved poli-
cies for both case studies with fewer safety violations and
performance superior to unshielded RL.

Supplementary materials are available at http://shieldrl.
nilsjansen.org.

Related Work. Most approaches to safe RL (Garcıa and
Fernández 2015; Pecka and Svoboda 2014) rely on reward
engineering and effectively changing the learning objective.
In contrast to ensuring temporal logic constraints, reward en-
gineering designs or “tweaks” the reward functions such that
a learning agent behaves in a desired, potentially safe, man-
ner. As rewards are specialized for particular environments,
reward engineering runs the risk of triggering negative side
effects or hiding potential bugs (Sculley et al. 2014). Re-
cently, it was shown that reward engineering is not sufficient
to capture temporal logic constraints in general (Hahn et al.
2019b). Additionally, in (Cheng et al. 2019) the exploration
of model-free RL algorithms is limited using control barrier
functions and in (Garcı́a and Fernández 2019) exploration is
restricted to a space close to an optimal, precomputed policy.

First approaches directly incorporating formal specifica-
tions tackle this problem with pre-computations; making as-
sumptions on the available information about the environ-
ment (Wen, Ehlers, and Topcu 2015; Junges et al. 2016;
Fulton and Platzer 2019; Hasanbeig, Abate, and Kroening
2018; Mason et al. 2017; Moldovan and Abbeel 2012), by
employing PAC guarantees (Fu and Topcu 2014), or by an
intermediate “correction” of policies (Pathak et al. 2015).
Most related is (Alshiekh et al. 2018), which introduces the

concept of a shield for RL. The difference and novel contri-
bution is rooted in the consideration of stochastic behavior,
which is natural to RL. Intuitively, without stochasticities,
a learning agent does not take any risk, which is unrealis-
tic in most scenarios. Moreover, often one cannot assume
that a 100% (or almost-sure) safety is realizable. A similar
approach to ours was developed independently in (Bouton
et al. 2019), but targets a different case study and does not
consider scalability issues of formal verification. In a related
direction, methods from reinforcement learning have been
successfully employed to improve the scalability of verifi-
cation methods for MDPs. Such approaches often use rich
specifications like ω-regular languages as a control to guide
the exploration of MDP during learning (Sadigh et al. 2014;
Brázdil et al. 2014; Hasanbeig, Abate, and Kroening 2018;
Kretı́nský, Pérez, and Raskin 2018; Hahn et al. 2018).

Safe model-based RL for continuous state spaces employ-
ing Lyapunov functions is considered in (Berkenkamp et al.
2017; Chow et al. 2018). UPPAAL STRATEGO provides a
number of algorithms combining safety synthesis with opti-
mizing RL for continuous space MDPs (David et al. 2015).
Finally, (Ohnishi et al. 2019) uses control barrier functions
(CBFs) for safe RL.

Probabilistic planning considers similar problems as
probabilistic model checking (Steinmetz, Hoffmann, and
Buffet 2016; Kolobov 2012). A recent comparison between
tools from both areas can be found in (Hahn et al. 2019a).

Problem Statement
Foundations. A probability distribution over a countable
set X is a function µ : X → [0, 1] with

∑
x∈X µ(x) = 1.

Distr(X) denotes all distributions on X . The support of
µ ∈ Distr(X) is supp(µ) = {x ∈ X | µ(x)>0}. A Markov
decision process (MDP)M = (S,Act ,P, r) has a set S of
states, a finite set Act of actions, a (partial) probabilistic
transition function P : S × Act → Distr(S), and an imme-
diate reward function r : S × Act → R≥0. For all s ∈ S
the available actions are Act(s) = {α ∈ Act | P(s, α) 6=
⊥} and we assume |Act(s)| ≥ 1. A policy is a function
σ : S∗ → Distr(Act) with supp(σ(s1 . . . sn)) ⊆ Act(sn)
and S∗ a finite sequence of states.

In formal methods, safety properties are often specified
as linear temporal logic (LTL) properties (Pnueli 1977). For
an MDP M, probabilistic model checking (Katoen 2016;
Kwiatkowska 2003) employs value iteration or linear pro-
gramming to compute the probabilities of all states and ac-
tions of the MDP to satisfy an LTL property ϕ. Specifically,
we compute ηmax

ϕ,M : S → [0, 1] or ηmin
ϕ,M : S → [0, 1], which

give for all states the minimal (or maximal) probability over
all possible policies to satisfy ϕ. For instance, for ϕ encod-
ing to reach a set of states T , ηmax

ϕ,M(s) describes the maximal
probability to “eventually” reach a state in T .

Setting. We define a setting where one controllable agent
(the avatar) and a number of uncontrollable agents (the ad-
versaries) operate within an arena. The arena is a compact,
high-level description of the underlying model. From this
arena, the potential states and actions of all agents may be
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inferred. For safety considerations, the reward structure can
be neglected, effectively reducing the state space for our
model-based safety computations. Formally, an arena is a
directed graph G = (V,E) with a finite sets V of nodes and
E ⊆ V × V of edges. The agent’s position is defined via
the current node v ∈ V . The agent decides on a new edge
(v, v′) ∈ E and determines its next position v′.

Some (combinations of) agent positions are safety-
critical, as they e.g. correspond to collisions or falling off
a cliff. A safety property may describe reaching such po-
sitions, or use any other property expressible in (the safety
fragment of) temporal logic.

While the underlying model for the arena suffices to spec-
ify the safe behavior, it is not sufficiently succinct to model
the performance via rewards. Consider an edge that is safety-
relevant, but the agent is only rewarded the first time taking
this edge. Thus, in a flat model with rewards, two different
edges are necessary to model this behavior. However, the re-
ward (and thus the difference between these edges) is not
needed to assess the safety, and the safety-relevant model
may be pruned to an exponentially smaller model. We use a
token function that implicitly extends the underlying model
by a reward structure, enabling a separation of concerns be-
tween safety and performance.

Technically, we associate edges with a token function
◦ : E → {0, 1}, indicating the status of an edge. Tokens
can be (de-) activated and have an associated reward earned
upon taking edges with an active token.

Example 1: Autonomous driving. An autonomous taxi
(the avatar) operates within a road network encoded by an
arena. The taxi has to visit several points to pick up or drop
off passengers (Dietterich 2000; Gym 2018). Upon visiting
such a point, a corresponding token activates and a reward
is earned, afterwards the token is deactivated permanently.
Meanwhile, the taxi has to account for other traffic partic-
ipants or further environmental factors (the adversaries). A
sensible safety specification may restrict the probability for
collision with other cars to 0.5%. Note that the token struc-
ture is not relevant for such a specification.

Example 2: Robot logistics in a smart factory. Take a fac-
tory floor plan with several corridors with machines. The
adversaries are (possibly autonomous) transporters moving
parts within the factory. The avatar models a specific service
unit moving around and inspecting machines where an issue
has been raised (as indicated by a token), while account-
ing for the behavior of the adversaries. Corridors might be
to narrow for multiple (facing) robots, which poses a safety
critical situation. The tokens allow to have a state-dependent
cost, either as long as they are present (indicating the costs
of a broken machine) or for removing the tokens (indicat-
ing costs for inspecting the machine). A similar scenario has
been investigated in (Bit-Monnot et al. 2018).

Problem. Consider an environment described by an arena
as above and a safety specification. We assume stochas-
tic behaviors for the adversaries, e.g, obtained using
RL (Sadigh et al. 2018; Sadigh et al. 2016) in a training en-
vironment. In fact, this stochastic behavior determines all

actions of the adversaries via probabilities. The underlying
model is then a Markov decision process: the avatar executes
an action, and upon this execution the next exact positions
(the state of the system) are determined stochastically.

We compute a δ-shield that prevents avatar decisions that
violate this specification by more than a threshold δ with
respect to the optimal safety probability. We evaluate the
shield using a model-based or model-free RL avatar that
aims to optimize the performance. The shield therefore has
to handle an intricate tradeoff between strictly focussing on
(short and midterm) safety and performance.

Constructing Shields for MDPs
We outline the workflow of our approach in Fig. 1 and
below. We employ a separation of concerns between the
model-based shield construction and potentially model-free
reinforcement learning (RL). First, we construct a behavior
model for each adversary. Based on this model and a con-
crete arena, we construct a compact MDP model: the safety-
relevant MDP quotient. In this MDP, we compute the shield
which enables safe RL for the full MDP. We now detail the
individual technical steps to realize our proposed method.

Behavior Models for Adversaries. We learn an adversary
model by observing behavior in a set of similar (small) are-
nas, until we gain sufficient confidence that more training
data would not change the behavior significantly (Sadigh et
al. 2018). An upper bound on the necessary data may be ob-
tained using Hoeffding’s inequality (Ziebart et al. 2008). To
reduce the size of the training set, we devise a data aug-
mentation technique using domain knowledge of the are-
nas (Krizhevsky, Sutskever, and Hinton 2012; Witten et al.
2016). In particular, we abstract away from the precise con-
figuration of the arena by partitioning the graph into zones
that are relative to the view-point of the adversary (e. g., near
or far, north or south, east or west). The intuitive assumption
is that the specific position of an adversary is not important,
but some key information is (e.g., the relation to the position
of the avatar). This approach (1) speeds up the learning pro-
cess and (2) renders the resulting behavior model applicable
for varying the concrete instance of the same setting.

Zones are uniquely identified by a coloring with a finite
set C of colors. Formally, for an arena G = (V,E), zones
relative to a node v ∈ V are given by a function zv : V → C.
For nodes x, y ∈ V , with zv(x) = zv(y), the assumption is
that the adversary in v behaves similarly regardless whether
the avatar is in x or y. From our observations, we extract a
histogram h : E × C → N, where h(e, c) describes how of-
ten the adversary takes an edge e = (v, v′) ∈ E while the
avatar is in a node u with zv(u) = c. We translate these like-
lihoods into distributions over possible edges in the arena.

Definition 1 (Adversary Behavior). For an arena G =
(V,E), zones zu : V → C for every u ∈ V , and a his-
togram h : E×C → N, the adversary behavior is a function
B : V × C → Distr(E) with

B(v, c) =
h
(
(v, v′), c

)∑
(v,v′)∈E h

(
(v, v′), c

) .
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areas Gh, Gr ✓ loc. Locations are given by
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A feature f = (tpf , `f ) 2 Feat consists of a type and a(feature-)location. [NJ] What is tpf?

[NJ] Perhaps Loc for
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type is a set Tp :=
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can be defined before the
definition.

Example 1. Consider the example depicted in Fig. 3, which we use as a
running example. The environment depicted is formally given as Env =
{loc, Feat}

[NJ] Envshould be a tu-
ple as defined, right?
Goal areas missing.

with

loc = {(x, y) | x 2 [0, 4] y 2 [0, 5]}, and

Feat = {fi = (Wpt, (2, i)) | i 2 {0 . . . 5} }
[ {f6 = (Obst, (1, 1)), f7 = (Obst, (3, 3))}
[ {f8 = (Litt, (1, 3)), f9 = (Litt, (4, 3))}

Human. The human is represented by its position which is a tuple of a
location and orientation posh = (`h, ↵h). An orientation has 8 possible
directions, i.e. ↵h 2 Orient = {i · 1

4⇡ | i 2 [0, 7]}. As an auxiliary we
define for each direction an associated direction vector Dir : Orient !
{�1, 0, 1}2 \ {(0, 0)}, which we depict in Fig. 4(a). Human movements
Mh = {LEFT, STRAIGHT, RIGHT} have associated changes in angle of
� = �1

4⇡, 0, or 1
4⇡. We depict the movement options in Fig. 4(b).

[NJ] Do we really need
the Orient-definition, or
would the direction suf-
fice?
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Model-free or
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Safe Policy
for Avatar

Figure 1: Workflow of the Shield Construction

While we employ a simple normalization of likelihoods,
alternatively one may also utilize, e. g., a softmax func-
tion which is adjustable to favor more or less likely deci-
sions (Sutton and Barto 1998).

Safety-Relevant Quotient MDP. The construction of the
MDP M = (S,Act ,P) augments an arena by behavior
modelsBi. First, the states S = V m+1×{0, . . . ,m} encode
the positions for all agents and whose turn it is. The decision
states of the safety-relevant MDP M are Sd = {sd ∈ S |
sd = (. . . , 0)}, i.e., it’s the turn of the avatar. The actions
Act = {α0} ∪ ActE with ActE = {αe | e ∈ E} deter-
mine the movements of the avatar and the adversaries. For
(v, . . . , 0) = sd ∈ Sd (the avatar moves next), the avail-
able actions are αe ∈ Act(sd) ⊆ Acte, where αe corre-
sponds to an outgoing edge of v. For (v, . . . , 0) = sd ∈ Sd,
αe with e = (v, v′) leads with probability one to a state
se = (v′, . . . , 1). For (v, . . . , vi, . . . , i > 0) (an adversary
moves next), there is a unique action α0 where vi is changed
to v′i, randomly determined according to the behavior Bi,
which also updates i to i + 1 modulo m. These transitions
induce the only probabilistic choices in the MDP.

A policy only has to choose an action at decision states.
At all other states, only the unique action α0 emanates. Con-
sequently, a policy forM is a policy for the avatar.

In theory, one can build the full MDP for the arena (V,E)
and the token function ◦ : E → {0, 1} under the assumption
that the reward function is known. Then, one can compute
the reward-optimal and safe policy without need for further
learning techniques. As there are 2E token configurations,
the state space blows up exponentially, which prevents the
successful application of model checking or planning tech-
niques for anything but very small applications.

Shield Construction. For the safety-relevant MDPM, a
set of unsafe states T ⊆ S should preferably not be reached

from any state. The property ϕ = ♦T encodes the viola-
tion of this safety constraint, that is, eventually reaching T
within M. The shield needs to limit the probability to sat-
isfy ϕ. We evaluate all decision states sd ∈ Sd with respect
to this probability: We compute ηmin

ϕ,M(se), i.e., the minimal
probability to satisfy ϕ from se, which is the state reached
after taking action αe ∈ Acte in sd.

Definition 2 (Action-valuation). An action-valuation for
action αe ∈ Acte at state sd ∈ Sd is

valMsd : Act(sd)→ [0, 1], with valMsd (αe) = ηmin
ϕ,M(se) .

The optimal action-value for sd is optvalMsd =

minα′∈Act valMsd (α
′), the set of all action-valuations at

sd is ActValssd .

We now define a shield for the safety-relevant MDP M
using the action values. Specifically, a δ-shield for δ ∈ [0, 1]
determines a set of actions at each decision state sd that
are δ-optimal for the specification ϕ. All other actions are
“shielded” or “blocked”.

Definition 3 (Shield). For action-valuation valMsd and δ ∈
[0, 1], a δ-shield for state sd ∈ Sd is

shield sdδ : ActValssd → 2Act(sd)

with shield sdδ 7→ {α ∈ Act(sd) | δ · valMsd (α) ≤ optvalMsd }.
Intuitively, δ enforces a constraint on actions that are ac-

ceptable with respect to the optimal probability. The shield
is adaptive with respect to δ, as a high value for δ yields a
stricter shield, a smaller value a more permissive shield. The
shield is stored using a lookup-table, and the value for δ can
then be changed on-the-fly. In particularly critical situations,
the shield can enforce the decision-maker to resort to (only)
the optimal actions w.r.t. the safety objective.

A δ-shield for the MDP M is built by constructing and
applying δ-shields to all decision states.



Definition 4 (Shielded MDP). The shielded MDP M =
(S,Act P ) for a safety-relevant quotient MDP M =
(S,Act ,P) and a δ-shield for all sd ∈ Sd is given by
the transition probability P with P (s, α) = P(s, α) if
α ∈ shield sδ(valMs ) and P (s, α) = ⊥ otherwise.

Lemma 1. If MDP M is deadlock-free if and only if the
shielded MDPM is deadlock-free.

We compute the shield relative to optimal values optvalMsd .
Consequently, for δ = 1, only optimal actions are preserved,
and for δ = 0 no actions are blocked.

Theorem 1. For an MDPM and a δ-shield, it holds for any
state s that valMs = val

M
s .

As optimal actions for the safety objective are not re-
moved, optimality w.r.t. safety is preserved in the shielded
MDP. Thus, during construction of the shield, we compute
the action-valuations in fact for the shielded MDP. Observe
that computing a shield for a state is done independently
from the application of the shield to other states.

Guaranteed Safety. A δ-shield ensures that only actions
that are δ-optimal with respect to an LTL property ϕ are
allowed. In particular, for each action α ∈ Acte at state
se, we use the minimal probability ηmin

ϕ,M(se) to satisfy ϕ,
see Def. 2. Under optimal (subsequent) choices, the value
ηmin
ϕ,M(se) will be achieved. In contrast, a sequence of bad

choices may violate ϕ with high probability. A more conser-
vative notion would be to use the minimal action value while
assuming that in all subsequent states the worst-case deci-
sions corresponding to the maximal probabilities are taken.
These values are computable by model checking. Regard-
less of subsequent choices, at least valMsd (αe) is then guar-
anteed. A sensible notion to construct a shield would then be
to impose a threshold λ ∈ [0, 1] such that only actions with
valMsd (αe) ≤ λ are allowed. A shield with such a guaranteed
safety probability may induce a shielded MDP (Def. 4) that
is not deadlock free. Moreover, the shield may become too
restrictive for the agent.

Scalable Shield Construction. Although we apply model
checking only in the safety-relevant MDP, scalability issues
for large applications remain. We employ several optimiza-
tions towards computational tractability.

Finite Horizon. For infinite horizon properties, the proba-
bility to violate safety (in the long run) is often one. Further-
more, our learned MDP model is inherently an approxima-
tion of the real world. Errors originating from this approx-
imation accumulate for growing horizons. Thus, we focus
on a finite horizon such that the action values (and conse-
quently, a policy for the avatar) carry only guarantees for
the next steps. This assumption also allows us to prune the
safety-relevant MDP (see below), increasing the scalability.

Piecewise Construction. Computing a shield for all states
in an MDP concurrently yields a large memory footprint.
To alleviate this footprint, we compute the shield states in-
dependently, in accordance with Theorem 1. The indepen-
dent computation prunes the relevant part of the MDP, as the

number of states reachable within the horizon is drastically
reduced. Additionally, the independent computation allows
for parallelizing the computation.

Independent Agents. The explosion of state spaces stems
mostly from the number of agents. Here, an important ob-
servation is that we can consider agents independently. For
instance, the probability for the avatar to crash with an ad-
versary is stochastically independent from crashing with the
others. Instead of determining the shield for all adversaries
at once, we perform computations for each agent individ-
ually, and combine them via the inclusion-exclusion prin-
ciple. Afterwards, the shield is composed from the shields
dedicated to individual adversaries.

Abstractions. We observe that for finite horizon properties
and piecewise construction, adversaries may be far away—
beyond the horizon—without a chance to reach the avatar.
We do not need to consider such (positions for) adversaries,
as in these states, the shield will not block any actions.

Fewer Decision States. Depending on the setting, there
might be only a few critical situations in which the agent
requires shielding to ensure safety. The shield can be com-
puted for this critical states only. Consequently, the agent
makes shielded decisions in the adapted decision states, and
unshielded decisions in all other ones.

Shielding versus Performance. A shield which is mini-
mally invasive gives the RL agent the most freedom to op-
timize the performance objective. We propose two methods
to alleviate invasiveness, all of them assume domain knowl-
edge of the rationale behind the decision procedure.

Iterative Weakening. During runtime, we may observe
that the progress of the avatar regarding the performance
objective is not increasing anymore. Then, we weaken the
shield by δ − ε, allowing additional actions. As soon as
progress is made, we reset δ to its former value. The adap-
tion of shield sδ to shield sδ−ε can be done on the fly, without
new computations.

Adapted Specifications. If the goal of the decision maker
is known and can be captured in temporal logic, we may
adapt the original specification accordingly. There are often
natural trade-offs between safety and performance. These
trade-offs might be resolved via weights, but this process
is often undesirable (Roijers et al. 2013) and similar to re-
ward engineering. Instead, optimizing the conditional per-
formance while assuming to stay sufficiently safe (Teichteil-
Königsbuch 2012), avoids side-effects of attaching some
weights to the safety specification.

Implementation and Numerical Experiments
Set-up. We run experiments using an Intel Core i7-4790K
CPU with 16 GB of RAM using 4 cores. We give the timing
results for a single CPU. Since the shield may be computed
in a multi-threaded architecture, this time can be divided by
the number of cores available.

The supplementary materials, namely the source code and
videos are available online1.

1http://shieldrl.nilsjansen.org

http://shieldrl.nilsjansen.org


(a) Still from video on classic PAC-MAN
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Figure 2: Scenarios and results for PAC-MAN

We demonstrate the applicability of our approach by
means of two case studies. For both case studies, we learn
adversary behavior in small arenas individually for each ad-
versary. These behavior models are applicable to any bench-
mark instance, as they are independent of concrete positions.

For the arcade game PAC-MAN, PM (the avatar) aims
to collect PAC-dots in a maze and not get caught by ghosts
(the adversaries). We model various instance of the game
(with different sizes) as an arena, where tokens represent the
dots at each position in the maze, such that a dot is either
present or collected. The score (reward, performance) is pos-
itively affected (+10) by collecting a dot and negatively by
time (each step: -1). If PM either collects all dots (+500)
or is caught (-500), the game is restarted. RL approaches
exist (Berkeley 2018), but they suffer from the fact that dur-
ing the exploration phase PM is often caught by the ghosts,
achieving very poor scores. The safety specification places
a lower bound on the probability of reaching states in the
underlying MDP that correspond to being caught.

We also consider a warehouse floor plan with several
corridors. A similar scenario has been investigated in (Bit-
Monnot et al. 2018). In the arena, nodes describe crossings,
the edges the corridors with shelves, and the distances the
corridor length. The agents are fork-lift units picking up
packages from the shelves and delivering them to the exit;
tokens represent the presence of a package at its position.
The avatar is a specific (yellow) fork-lift unit that has to ac-
count for other units, the adversaries. The performance (re-
ward) is positively affected by loading and delivering pack-

(a) Still from the video on warehouse
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(b) Scores during training on warehouse

Figure 3: Scenarios and results for warehouse

ages (+20, respectively) and negatively by time (each step:
-1). Delivering all packages yields a large bonus (+500) and
a collision leads to a large punishment (-500), both cases
end the scenario. Corridors might be too narrow for multiple
(facing) units, which poses a safety-critical situation. Most
crucial is the crowded area near the exit, since all units have
to deliver the packages to the exit.

Transferring the stochastic adversary behavior to any
arena (without tokens) yields a concrete safety-relevant
MDP. In particular, we specify an arena with the positions
of the avatar and the adversaries as well as the behavior
in the high-level PRISM-language (Kwiatkowska, Norman,
and Parker 2011). We employ a script that automatically
generates arenas to enable a broad set of benchmarks. Tak-
ing, e.g., the PAC-MAN arena from Fig. 2(a), the consid-
ered MDP has roughly 1012 states (compared to 1050 for
the full MDP). For a safety-relevant MDP, we compute a
δ-shield (with iterative weakening) via the model checker
Storm (Dehnert et al. 2017), using a horizon of 10 steps.
The immense size even of safety-relevant MDPs requires
optimizations such as a piecewise and independent shield
construction. Moreover, a multi-threaded architecture lets us
construct shields for very large examples. In particular, we
perform model checking for (many) MDPs of roughly 106

states. The computation time for the largest PM instance
takes about 6 hours (single-threaded), while memory is not
an issue due to the piecewise shield construction.

We compare RL to shielded RL on different instances.
The key comparison criterion is the performance (detailed
above) during learning. Our implementation is based on an
existing PAC-MAN environment2 using an approximate Q-

2http://ai.berkeley.edu/project overview.html

http://ai.berkeley.edu/project_overview.html


Table 1: Average scores and win rates for PM
Size,

#Ghosts
#Model

Checking time (s) Score
w/o Shield

Score w.
Shield

Win Rate
w/o Shield

Win Rate
w. Shield

9x7,1 5912 584 -359,6 535,3 0,04 0,84

17x6,2 5841 1072 -195,6 253,9 0,04 0,4

17x10,3 51732 3681 -220,79 -40,52 0,01 0,07

27x25,4 269426 19941 -129,25 339,89 0,00 0,00

learning agent (Sutton and Barto 1998) with the following
feature vectors:
• for PAC-MAN: (1) distance to the closest dot, (2) whether

a ghost collision is imminent, and (3) whether a ghost is
one step away.

• for Warehouse: (1) has the unit loaded or unloaded,
(2) the distance to the next package and (3) to the exit,
(4) whether another unit is three steps away and (5) one
step away.

The results are basic reflex controllers. The Q-learning uses
the learning rate α = 0.2 and the discount factor γ = 0.8
for the Q-update and an ε-greedy exploration policy with ε =
0.05. One episode lasts until either the game is restarted. We
describe results for the training phase of RL (300 episodes).

Results. Figures 2(a) and 3(a) show screenshots of a se-
ries of recommended videos (available in the supplemen-
tary material). Each video compares how RL performs ei-
ther shielded or unshielded on a instance of the case study.
In the shielded version, at each decision state in the underly-
ing MDP, we indicate the risk of decisions from low to high
by the colors green, orange, red.

Consider PAC-MAN in detail: Figure 2(b) depicts the
scores obtained during RL. The curves (blue, solid: un-
shielded, orange, dashed: shielded) show the average scores
for every ten training episodes. Table 1 shows results for
instances in increasing size. We list the number of model
checking calls and the time to construct the shield. We list
the scores with and without shield, and the winning rate cap-
turing the ratio of successfully ended episodes. For all in-
stances, we see a large difference in scores due to the fact
that PM is often rescued by the shield. The winning rates
differ for most benchmarks, favoring shielded RL. For three
or four ghosts, a shield with a ten-step horizon cannot guide
PM to avoid being encircled by the ghosts long enough
to successfully end the game. Nevertheless, the shield of-
ten safes PM, leading to superior scores. Moreover, the
shield helps learning an optimal policy much faster as fewer
restarts are needed.

For the warehouse case study, we choose to vary the de-
cision states, i.e., the positions of the avatar for which we
compute a shield. We present results for shielding the 2–8
crossings closest to the exit. Figure 3(b) shows the average
score for the different variants, Table 2 summarizes aver-
age score and win rate. Unsurprisingly, the score gets better
the more states are shielded. Furthermore, we have seen that
shielding even more states has only a very limited effect.

Table 2: Average scores and win rates for warehouse
Crossings shielded 0 2 4 8

Score -186 -27.6 303 420
Win Rate 0.16 0.31 0.59 0.71

Conclusion and Future Work
We developed the concept of shields for MDPs. Utiliz-
ing probabilistic model checking, we maintained probabilis-
tic safety measures during reinforcement learning. We ad-
dressed inherent scalability issues and provided means to
deal with typical trade-off between safety and performance.
Our experiments showed that we improved the state-of-the-
art in safe reinforcement learning.

For future work, we will extend shields to richer mod-
els such as partially-observable MDPs. Moreover, we will
extend the applications to more arcade games and em-
ploy deep recurrent neural networks as means of decision-
making (Hausknecht and Stone 2015; Carr et al. 2019). An-
other interesting direction is to explore (possibly model-
free) learning of shields, instead of employing model-based
model checking.
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