
Figure 13: Overtting during training, for NLP datasets. Strong models overt to the weak
labels. (a) Ground truth test accuracy of strong students over the course of training for a subset of
our NLP task. Hues indicate the gap between weak supervisor and strong student model compute.
Inset numbers indicate dataset id (compare Figure 12). (b) Median best, early-stopped according to
weak label agreement, and nal performance gap recovered (PGR) aggregated across all supervisor-
student pairs and all NLP tasks. Error bars indicate standard error of the mean (s.e.m.).

Prompt: “1. d4 1... Nf6 2. Nf3 2... d5 3. e3 3... e6 4. Bd3 4... c5
5. c3 5... Be7 6. Nbd2 6... O-O 7. O-O 7... Nc6 8. Re1 8... Bd7 9. e4 9... dxe4
10. Nxe4 10... cxd4 11. Nxf6+ 11... Bxf6 12. cxd4 12... Nb4 13. Be4 13... Qb6
14. a3 14... Nc6 15. d5 15... exd5 16. Bxd5 16... Bf5 17. Bxc6 17... Qxc6
18. Nd4 18... Bxd4 19. Qxd4 19... Rfe8 20. Rxe8+ 20... Rxe8 21. Be3 21... b6
22. Rc1 22...”

Label: “ Qxc1+”

Prompt: “1. e4 1... e5 2. Nc3 2... Nf6 3. Nf3 3... Nc6 4. Bb5 4... Bc5
5. Bxc6 5... dxc6 6. d3 6... Bg4 7. h3 7... Bxf3 8. Qxf3 8... O-O 9. g4
9... Bb4 10. Bd2 10... Nd7 11. h4 11... Be7 12. g5 12... Nc5 13. O-O-O
13... Qd7 14. h5 14... Qd8 15. Qg3 15... Ne6 16. Rdg1 16... b5 17. Qxe5
17... a5 18. f4 18... Re8 19. Qf5 19... b4 20. Na4 20... Nd4 21. Qg4 21... c5
22. f5 22... Ra6 23. f6 23... Bd6 24. fxg7 24... Kxg7 25. Rg2 25... Qc8
26. h6+ 26... Kg8 27. Qh5 27... Qd7 28. Rf1 28... Re6 29. Rgf2 29... Rg6
30. c3 30... bxc3 31. Nxc3 31... a4 32. Nd5 32... Qb5 33. Nf6+ 33... Kh8
34. Qh3 34... Rb6 35. Be3 35... Ne6 36. Nxh7 36... Qxd3 37. Rd1 37... Qc4+
38. Kb1 38... Qxe4+ 39. Ka1 39... Be5 40. Nf6 40... Qc4 41. Nd5 41... Rb7 42.”

Label: “ Qf5”

(a) Elo-695 puzzle (b) Elo-2253 puzzle

Figure 14: Chess puzzles: example datapoints. Two representative examples of an easy (a) and a
hard (b) chess puzzle with corresponding prompts and target label formats.

31



Figure 15: Additional results on chess. Test accuracy of (a) baseline and (b) bootstrapping (see
section 4.3.1) compared to a zero-shot baseline. Zero-shot performance improves with model size,
and students supervised with much weaker supervisors sometimes underperform compared to the
corresponding zero-shot model. (c) Supervisor-student agreement on the chess puzzle data. Similar
to Figure 8, agreement decreases as the student becomes larger. Hue of line indicates compute of
weak supervisor.

Zero-shot results. In Figure 15(a, b), we compare the naive baseline and bootstrapping (see sec-
tion 4.3.1) generalization to a zero-shot baseline on the chess puzzle data. Especially since the
models were pretrained on chess games, zero-shot evaluation provides a strong baseline. In partic-
ular, strong students trained with much weaker supervisors underperform the zero-shot baseline for
the same model size in some cases.

Supervisor-student agreement results. In Figure 15(c), we report the supervisor-student agree-
ment on the chess puzzles. Similar to the NLP tasks (see Section 5.1.3), the agreement on chess also
decreases as the student models get larger.

A.3 CHATGPT REWARD MODELING

Data preprocessing. Each datapoint presents a dialog d between a user and an assistant, with
a last message coming from the user; for each dialog, there are multiple candidate completions
(c1, c2, . . . , cm), i.e. responses from the assistant. We also have access to pairwise comparisons of
completions, where the labeler species the preferred completion within a given pair of completions.
To sum up, the datapoints can be viewed as (d, c1, c2, y), where the label y is 1 if the labeler preferred
completion c2 and 0 otherwise. We use a mixture of multiple datasets used to train the reward models
for ChatGPT.

Models. To adapt the language models to the reward modeling setting, we replace the unem-
bedding layer of the model with a linear head with a single output, which is the logit for a given
completion. The weights for this head are initialized to the unembedding weights of an arbi-
trary token in the original embedding layer. Similar to past work (Stiennon et al., 2020; Ouyang
et al., 2022), we run two forward passes for each comparison, and the model prediction is given
by σ(Mw(d, c2) − Mw(d, c1)), where σ is the sigmoid function and Mw(d, c) is the logit for
completion c predicted by the model.

Training hyperparameters. We train for 1 epoch with a batch size of 220. We do not apply
early-stopping.

Weak labels. We train the weak models on half of the available comparison data, and then
make predictions on the other half. The weak label yw for a comparison (d, c1, c2) is given by
yw = σ(Mw(d, c2) − Mw(d, c1)), where σ is the sigmoid function and Mw(d, c) is the logit for
completion c predicted by the weak model.

Supervisor-student agreement results. In Figure 16, we report the supervisor-student agreement
on the RM task. Similar to the NLP tasks in Figure 8 and chess puzzles in Figure 15(c), the agree-
ment decreases as the student gets larger.

32



Figure 16: Supervisor-student agreement decreases for stronger students on RMs. Please refer
to caption of Figure 8 for detailed explanation of the plot. We reproduce the supervisor-student
agreement experiment on the reward modeling data, and observe similar trends to the NLP tasks.

Generative netuning. In Figure 17, we show that the PGR improvements from the generative
netuning on RM data (Section 5.2.2) and from early-stopping on ground truth test accuracy (Sec-
tion 5.1.1) stack together, leading to results competitive with the NLP and chess settings. In Fig-
ure 18, we report the results of an experiment similar to Figure 10, but where the weak models are
also pretrained with an additional generative netuning step on the RM data.

A.4 AUXILIARY CONFIDENCE LOSS

Here, we provide a detailed description of the method we use in Section 4.3.2.

We use the following loss function:

Lconf(f) = (1− α) · CE(f(x), fw(x)) + α · CE(f(x), f̂t(x)) (1)

where CE(·, ·) is the cross-entropy loss between the predictive distributions on a given input x,
fw(x) ∈ [0, 1] represents the weak label predictive distribution, f(x) ∈ [0, 1] is the strong model
predictive distribution, α is a weight and t is a threshold. The predictions f̂t(x) correspond to
hardened strong model predictions using a threshold t, i.e. f̂t(x) = I[f(x) > t] ∈ {0, 1} where I is
the indicator function. We set the threshold t adaptively, so that f(x) > t holds for exactly half of
examples in the batch7. We set αmax = 0.75 for the largest student models and to 0.5 otherwise and
linearly warm-up α from 0 to αmax over the rst 20% of training.

Our balancing mechanism incorporates a prior over the distribution of labels into training and is
only practically feasible in the low-n classication setting. For most weak-strong pairs and datasets,
it had a small or neutral effect on weak-to-strong generalization; however, in a few settings it made
a signicant improvement.

We note that the loss in Equation 1 can be rewritten as a self-bootstrapping loss:

Lconf(f) = CE(f(x), (1− α) · fw(x) + α · f̂t(x)), (2)

i.e. the cross-entropy target is a mixture of the weak model predictions and the (thresholded) pre-
dictions of the strong student itself. This loss is related to the bootstrapping methods in Reed et al.
(2014) and Arazo et al. (2019) for addressing label noise. It is also similar to self-training (Lee
et al., 2013) and conditional entropy minimization (Grandvalet & Bengio, 2004), which have led
to state-of-the-art results in semi-supervised learning (Xie et al., 2020) and domain adaptation (Shu
et al., 2018). Chen et al. (2020b) and Wei et al. (2020) show that self-training can mitigate the bias
of the supervisor model.

In Appendix B we also describe other methods we considered; for most of these methods, we got
negative early results.

7The choice of exactly half reects the prior over classes, and should be computed explicitly from weak
model predictions in non-balanced or non-binary settings.

33



Figure 17: The benets of improved task-specic tuning and ground truth early stopping stack,
resulting in even higher PGR. Like Figure 10 but with ground truth early stopping based on test
accuracy.

Figure 18: PGR improves when both supervisors and students have an extra generative ne-
tuning step. Like Figure 10 but where “with generative netuning” indicates that both supervisors
and students have an extra generative netuning step. In other words, for this experiment all base
models have an extra generative netuning step following pretraining.

B ADDITIONAL RESULTS ON METHODS

We did preliminary experiments on a variety of methods for improving the strong model perfor-
mance in our weak-to-strong generalization setting. We found many of them not useful for im-
proving over the naive netuning baseline, and others yielding limited improvements on a subset of
settings but not consistently over all datasets and model sizes. We summarize the algorithms, the
motivations, and the takeaways below. Note that we did not optimally tune each of the methods, so
it is possible that with better tuning they may still perform well.

Condence thresholding. To lter out incorrect weak labels, we used a simple cut-off method
that selected only the top 5% to 20% examples from each class where the weak supervisor is most
condent to train the strong model. We found that our weak labels are typically well-calibrated,
but condence thresholding only helps when the weak labels are very bad (e.g. 60% accuracy) and
stops being useful when the weak labels reach around 70% to 80% accuracy. We observed these
results both in NLP and in the chess puzzle settings. See Appendix C for more discussion of related
experiments.

Condence losses. To encourage strong model to make condent predictions (Grandvalet &
Bengio, 2004), we added an auxiliary loss that encourages the model predicted class probabil-

34



Table 2: Custom prompts used in the zero-shot and few-shot experiments. We design a simple
custom prompt for each of the tasks in the table below. In the few-shot setting, we also append
labeled (with ground truth or weak labels) examples to the prompt.

Dataset Custom Prompt

CosmosQA There is some context, followed by a question about the context, and an answer.
Respond with 1 if the answer is correct, and 0 otherwise.

Deontology There is a short scenario, consisting of a situation or request, followed by an excuse.
Respond with 1 if the excuse is valid, and with 0 otherwise.

Justice There is a statement. Respond with 1 if it is correct or just and with 0 otherwise.

QuAIL There is a news context, followed by a question about the context, and an answer
to the question. Respond with 1 if the answer is correct, and with 0 otherwise.

SciQ There is a science knowledge question, followed by an answer.
Respond with 1 if the answer is correct, and with 0 otherwise.

Social IQa There is some context, followed by a social question, followed by an answer.
Respond with 1 if the answer is correct, and 0 otherwise.

Virtue There is a short scenario, followed by a judgement of the person involved.
Respond with 1 if the judgement is correct, otherwise respond with 0.

ity p to be far away from 0.5. We tried both the l2 loss −(p − 0.5)2 and the entropy loss
p log p + (1 − p) log(1 − p). We found these losses to be helpful in preliminary experiments in
the linear probing setting, but they generally performed less well than the condence auxiliary loss
in Equation 1 in the netuning setting. We have also observed negative results with the condence
losses when the training data is highly class-imbalanced or when we do not use the rebalancing
procedure described in Section 4.3.

Product condence loss. We also tried a condence-like loss which sets the cross entropy tar-
gets to be proportional to the product of the probabilities that the weak and strong models assign,
renormalized across classes and without propagating gradients through the targets. In preliminary
experiments, this loss consistently gave positive results over the baseline on two NLP tasks, but
performed poorly compared to our main condence loss. Variants like geometric mean instead of
product gave no boost. Compared to the condence loss, it could be useful as it has no inter-batch
dependence and could potentially be adapted for generative tasks.

LP-FT. We used the LP-FT technique proposed in Kumar et al. (2022) which rst trains a linear
probe on frozen strong model representations and then netunes all layers, to avoid destroying the
pretrained representation. We were unable to get improvements compared to the netuning baseline.

Weight regularization. To regularize the strong model weights to avoid imitating the weak la-
bels8, we tried a variety of regularization techniques for strong model training, including stronger
weight decay (Krogh & Hertz, 1991) and dropout (Srivastava et al., 2014). We did not nd signi-
cant improvement.

LoRA. As another regularization technique, we also considered low-rank adaptation (LoRA) (Hu
et al., 2022), i.e. only making a low-rank update to the parameters of each layer of the model during
netuning. We did not nd any improvement, even when sweeping the LoRA rank.

Data augmentation. Inspired by the success of consistency algorithms in self-supervised train-
ing (Chen et al., 2020a; Caron et al., 2021), we used the strong student models to rephrase the inputs
in each sample, and added an auxiliary loss enforcing the strong model predictions to be consistent
between original and rephrased samples. We did not nd any improvement on a selected subset of
NLP datasets.

8However, as we discuss in Section 5.1.3, in our setup the strong model tends to be bad at imitating the
weak labels. Therefore, regularization could be more important in settings where the strong model can t the
weak labels well.

35



Figure 19: Easy-to-hard generalization on chess puzzles. We netune models on chess puzzles
with Elo ≤ t, varying the threshold t, and evaluate the netuned models on (a): all test puzzles,
and (b): hard test puzzles with Elo ≥ 2000. Across the board, we see strong performance, even
when training only on very easy puzzles (Elo ≤ 800). For reference, we also include the zero-
shot performance of the model. Finetuning on easy puzzles, we improve upon the performance on
average on the test set, but we do not improve on hard puzzles, compared to the zero-shot model.

Adding label noise, special losses for noisy labels. We experimented with the generalized cross-
entropy loss proposed in Zhang & Sabuncu (2018) that is more robust to label noise, but did not nd
improvement over cross-entropy. We also tried adding random noise to weak labels, and found that
the strong models were able to simulate the weak labels less well, especially early in training, but it
did not ultimately result in improved performance.

Few-shot prompting. As an alternative to ne-tuning, we can use the in-context learning ability
of the strong student models. For each task, we append a custom prompt shown in Table 2. For a
detailed description of the results, see Section 5.2.1.

Weight averaging. Prior work (Izmailov et al., 2018; Cha et al., 2021; Wortsman et al., 2022b;a)
suggested that various forms of weight averaging can substantially improve performance, especially
in distribution shift settings. In our setup, we experimented with applying exponential moving
averaging to the parameters of the model during training, but did not observe improvements relative
to the baseline.

C EASY-TO-HARD GENERALIZATION

In Section 5.1.3 and Appendix E, we discuss that one reason weak-to-strong generalization may
be difcult is if the weak labels have systematic errors that the strong model can learn to emulate.
One natural type of systematic weak label error is to do poorly on hard examples and well on easy
examples.

In this section, we focus on studying what we call easy-to-hard generalization, where we train only
on easy examples using ground truth supervision, and assess generalization to harder examples.

C.1 CHESS PUZZLES

Each chess puzzle comes with a natural difculty label: an Elo score, which describes its difculty
according to humans. On the https://lichess.org website, people try to solve puzzles,
which can be viewed as a game between a puzzle and a human player. The Elo scores are then
assigned to both human players and chess puzzles following the standard Elo algorithm.

We consider the easy-to-hard generalization problem, where the difculty is dened according to
the puzzle Elo rating. We note that the puzzle Elo describes the difculty of the entire puzzle
move sequence, while we are only training the model to predict the rst move in the sequence

36



(a) Easy cutoff: Elo ≤ 1200

(b) Easy cutoff: Elo ≤ 900

Figure 20: Easy-to-hard generalization on chess puzzles. We present detailed performance of
models netuned on different subsets of chess puzzles across model sizes and test puzzle difculty
levels. For each model size, we compare models trained only on easy puzzles, hard puzzles, or all
puzzles. We also include the zero-shot model performance. We provide results for the easy puzzle
Elo cutoffs of (a): 1200 and (b): 900. All netuned models are trained on 50k random datapoints
from the corresponding distribution. The size of the model is shown in the upper-right corner of
each panel, in terms of fraction of GPT-4 compute.

37



Figure 21: Effect of varying training data difculty on test set accuracy. Test accuracy as a func-
tion of sample difculty cutoff on a subset of our NLP tasks. The leftmost point on the horizontal
axis corresponds to only using datapoints that models of all sizes that we consider get right when
trained on other data sampled from the same task, and the rightmost point (denoted with ∞) corre-
sponds to training on all datapoints; the point with value x on the horizontal axis corresponds to only
using the datapoints that models with x or higher compute (fraction of GPT-4) consistently get right.
Inset numbers indicate task id (compare Figure 12). Hue indicates compute of weak supervision.
Stars indicate points where weak supervisor size corresponds to sample difculty cutoff.

(see Appendix A.2). Consequently, the puzzle Elo is a high-quality but still imperfect measure of
difculty of the problem for humans. It is also important to note, that puzzle Elo may not be a good
measure of difculty for the models: easy puzzles for humans can be hard for the models and vice
versa.

We then split the dataset into subsets according to the puzzle Elo. We consider the hard
set to be puzzles with difculty above Elo 2000. For the easy set, we consider cuttoffs in
{800, 900, 1000, 1100, 1200, 1300}, and use puzzles with difculty below the cutoff. We also con-
sider the unrestricted set of all puzzles. We sample 50k puzzles from each of these sets randomly,
and netune the model on them9.

We report the results in Figure 19, where we also provide the performance of a zero-shot baseline
for reference. We plot the accuracy of the models trained on the easy subsets of puzzles against the
performance of the same model trained on all puzzles. We nd that the models generally perform
well on average on the test set in panel (a), and outperform the zero-shot baseline. Interestingly,
when evaluated on hard examples only, in panel (b), the models perform similarly to the zero-shot
baseline, or slightly worse.

When trained on easy puzzles, the models shift towards performing well on the easy puzzles, and
underperform on the hard puzzles. In Figure 20, we can see that generally the models improve upon
the zero-shot baseline outside of their training difculty range, often up to Elo of 1500 or higher, but
underperform on the hardest examples.

C.2 NLP TASKS: DIFFICULTY THRESHOLDING

NLP tasks do not come with a natural source of difculty labels, but we can create such labels by
looking at performance as a function of model size.

9For easy puzzles with 800-Elo cutoff, we only use 25k puzzles, because there are not 50k puzzles available
in this difculty range.

38



Figure 22: Filtering training samples by GPT-4 generated Elo scores results in very good easy-
to-hard generalization. (a) GPT-4 generated Elo scores for different, human-dened, problem
difculties (1 - easiest, 5 - hardest) on the MATH dataset. (b) Average test accuracy as a function of
strong student compute on a subset of our NLP tasks. Student is trained on ground truth labels on
samples of all difculties (black), only the 30% easiest tasks (orange), or only the 50% easiest tasks
(blue).

We dene difculty of a datapoint based on the smallest model size that consistently predicts the
label on this datapoint correctly, when trained on ground truth. For example, suppose we have
4 ground truth models W1, W2, W3, W4 that use compute C1 < C2 < C3 < C4 respectively.
Suppose models W1, W3, W4 predict the example correctly when it is in a held-out set, while W2

predicts it incorrectly. Then we will assign a difculty of C3 to the example.

Then given a difculty cutoff D, we lter the training set to examples with difculty ≤ D. We
subsample the ltered set so that the number of training examples is equal to the number of examples
at the lowest difculty level. We train a model on the subsampled training set using ground truth
labels, and measure its accuracy on a held out test set (with no subsampling).

The subsampling ensures that we use the same training set size for each difculty cutoff. Using
ground truth labels ensures that the label accuracy is the same (100%) for each cutoff. We also use
the same test set for each cutoff. This setup lets us vary only training data difculty, and measure its
impact on the trained model’s accuracy.

We plot results in Figure 21. The y-axis is accuracy on the test set, while the x-axis is the difculty
cutoff. Increasing the difculty cutoff generally leads to an increase in accuracy. This result suggests
that solving easy-to-hard generalization is non-trivial even if there are no weak label errors.

For smaller models (darker lines), the accuracy initially increases, but starts to decrease beyond a
point. The drop generally happens when the difculty cutoff exceeds the capacity of the model itself,
i.e. when the examples are too difcult for the model to t. However, large models trained on easy
examples often perform well.

C.3 GPT-4 PREDICTED DIFFICULTY

Ultimately, we care about strong models generalizing from human supervision. From this perspec-
tive, it is important to understand whether we can achieve easy-to-hard generalization, where the dif-
culty is measured according to humans, rather than capacity-constrained models. In Appendix C.1,
we explored this question in chess, but we would want to extend this analysis to the NLP tasks.

Most natural datasets do not come with information about problem difculty. As a rough estimate,
we automatically generated difculty labels using GPT-4. More concretely, we used GPT-4 to rank
pairs of examples in each dataset, asking “which question is easier, Question A or Question B?” We
then calculated the Elo scores for each example via a nite number of random comparisons.

39



Table 3: Weak-to-strong generalization on ImageNet. We train linear probes on the representa-
tions extracted by DINOmodels with weak supervision from an AlexNet model. The strong students
substantially outperform their weak supervisor.

Model Top-1 Accuracy (%) PGR (%)

AlexNet (weak supervisor) 56.6 -

Dino ResNet50 63.7 -
Dino ViT-B/8 74.9 -

AlexNet → DINO ResNet50 60.7 57.8
AlexNet → DINO ViT-B/8 64.2 41.5

To evaluate the quality of GPT-4 Elo score as a measure of difculty, we performed correlation anal-
ysis against human annotations for datasets with human difculty levels such as MATH (Hendrycks
et al., 2021) and chess, as well as against weak model condence. We found that the three measures
align better for reasoning tasks such as MATH, as we show in Figure 22(a), but not much for some
natural language tasks. When looking at the samples, we found that GPT-4 Elo scores tend to be
higher for longer questions, but those questions may actually be easy for smaller models since they
provide more context.

Using GPT-4 Elo score as a proxy for human difculty, we used different cutoffs on scores to sep-
arate easy and hard examples, trained the strong models on the easy examples only (with ground
truth labels), and evaluated on the hard examples. Preliminary results are shown in Figure 22(b).

In general, we found that using GPT-4 Elo as measure of hardness makes generalization slopes
steeper than our main setup of weak-to-strong generalization. One possible confounder for interpre-
tation is that our Elo measurements could be noisy, causing generalization to be better.

Note that this setup is a classic covariate shift problem, whereas our main setup focuses more on
concept shift and noisy labels. It is unclear which setup would be more relevant, and we think it is
important to study easy-to-hard generalization more thoroughly in future work.

D OTHER WEAK-TO-STRONG SETTINGS

D.1 SELF-SUPERVISED VISION MODELS

We additionally demonstrate weak-to-strong generalization in a simple image classication experi-
ment. We use a pretrained AlexNet model (Krizhevsky et al., 2012) as a weak supervisor, and use
it to generate weak labels on the ImageNet (Russakovsky et al., 2015) validation set. As a strong
student, we use linear probing on frozen representations extracted by DINO models (Caron et al.,
2021) based on ResNet-50 (He et al., 2016) and ViT-B/8 (Dosovitskiy et al., 2020) architectures.
The DINO models are pretrained in an unsupervised way and did not observe direct supervision for
ImageNet classication or any other classication task during pretraining, so this experiment does
not have the pretraining leakage disanalogy discussed in Section 6.1.

We use 40k datapoints from the validation set to train the linear probes, and evaluate performance
on the remaining 10k datapoints. For training the linear probes, we use a batch size of 128, Adam
optimizer (Kingma & Ba, 2014) and a learning rate of 10−3. We run 20 epochs of training for
ResNet-50 and 5 epochs for ViT-B/8.

We report the results in Table 3. Similarly to our main experiments in Section 4, the student can
substantially outperform the supervisor, achieving PGR on the order of 50%. This experiment shows
that our results are not limited to the natural language setting, and generalize to other domains. It
also shows that strong students can generalize from weak supervision on tasks where they only had
indirect pretraining, i.e. where the knowledge of the task is latent.

40


